Deagostino A.

  1. Scarfiello, J., Caracciolo, S., Rusconi, M., Lanfranco, A., Azzi, E., Ghigo, G., Renzi, P.,* Deagostino, A., Catalyst-free Chloroamination Cyclization Cascade with Sodium Hypochlorite: from N‑(Pentenyl)sulfonylamides to 2‑(1-Chloromethyl)pyrrolidines, Eur. J. Org. Chem. 2024, 21, e202400108. Special Collection New Generation Methodologies in Organic Chemistry: A Focus on Italy.

           https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/ejoc.202400108

             Abstract: A mild and catalyst-free protocol to obtain several 2-chloromethylpyrrolidines by the use of a commercial solution of sodium hypochlorite is here reported, without the need for a light source. The choice of the solvent revealed to be crucial in the success of the reaction. Mechanistic studies, both experimental and computational, confirmed a radical                   mechanism, where the deprotonation step, followed by the oxidation of a N-centered anion to the corresponding radical, allowed 2-chloromethylpyrrolidines, by a very fast cyclization, to be obtained. Sodium hypochlorite plays the role of both the oxidant and the chlorine source.

2. D. Mazzucconi, D. Bortot, S. Agosteo, A. Pola, D. Rastelli, S. Pasquato, C. Caprioli, S. Micocci, S. Parisotto, A. Deagostino, S. G. Crich, S. Altieri and N. Protti, Rad. Phys. Chem., 2024, 222, 111799.

https://www.sciencedirect.com/science/article/pii/S0969806X24002913

Abstract: Alzheimer Disease (AD) is the most common cause of dementia. 46.8 million people live with AD worldwide, with numbers projected to almost double every 20 years. The etiological mechanisms underlying the neuropathological changes in AD remain unclear. The beta amyloid peptide Aβ is considered to be the main culprit of the pathological processes. NECTAR (NEutron Capture-enhanced Treatment of neurotoxic Amyloid aggRegates) project proposes an alternative and revolutionary strategy to address AD, investigating the safety, feasibility and effectiveness of a Capture-Enhanced Neutron Irradiation to structurally damage Aβ aggregates, by exploiting capture agent vectors containing B-10 and Gd-157.

 

3. Lanfranco, A., Rakhshan, S., Alberti, D., Renzi, P.,. Zarechian, A., Protti, N., Altieri, S.,. Geninatti Crich, S.,* Deagostino, A.,* Combining BNCT with Carbonic Anhydrase Inhibition for Mesothelioma Treatment: Synthesis, In-vitro, and In-vivo Studies of Ureidosulfamido ortho-Carborane, Eur. J. Med. Chem. 2024, 270, 116334

https://www.sciencedirect.com/science/article/pii/S0223523424002149?via%...

Abstract: Mesothelioma is a malignant neoplasm of mesothelial cells caused by exposure to asbestos. The average survival time after diagnosis is usually nine/twelve months. A multi-therapeutic approach is therefore required to treat and prevent recurrence. Boronated derivatives containing a carborane cage, a sulfamido group and an ureido functionality (CA-USF) have been designed, synthesised and tested, in order to couple Boron Neutron Capture Therapy (BNCT) and the inhibition of Carbonic Anhydrases (CAs), which are overexpressed in many tumours. In vitro studies showed greater inhibition than the reference drug acetazolamide (AZ). To increase solubility in aqueous media, CA-USFs were used as inclusion complexes of hydroxypropyl β-cyclodextrin (HP-β-CD) in all the inhibition and cell experiments. BNCT experiments carried out on AB22 (murine mesothelioma) cell lines showed a marked inhibition of cell proliferation by CA-USFs, and in one case a complete inhibition of proliferation twenty days after neutron irradiation. Finally, in vivo neutron irradiation experiments on a mouse model of mesothelioma demonstrated the efficiency of combining CA IX inhibition and BNCT treatment. Indeed, a greater reduction in tumour mass was observed in treated mice compared to untreated mice, with a significant higher effect when combined with BNCT. For in vivo experiments CA-USFs were administered as inclusion complexes of higher molecular weight β-CD polymers thus increasing the selective extravasation into tumour tissue and reducing clearance. In this way, boron uptake was maximised and CA-USFs demonstrated to be in vivo well tolerated at a therapeutic dose. The therapeutic strategy herein described could be expanded to other cancers with increased CA IX activity, such as melanoma, glioma, and breast cancer.

 

  1. Renzi, P.,* Rusconi, M., Ghigo, G., Deagostino, A. Purple-Light Promoted Thiol-ene Reaction of Alkenes, Adv. Synth. Catal. 2023, 365, 4623. Featured in Org. Chem. Highlights 2024, May 27.

https://onlinelibrary.wiley.com/doi/10.1002/adsc.202300990

Abstract: Here we present a catalyst-free protocol for the purple light-mediated anti-Markovnikov functionalization of alkenes with thiols. Crucial to the generation of the thiyl radical was the formation of a key photo-active complex. More than 30 thioether products were obtained, demonstrating tolerance towards different functional groups and scalability up to 5 mmol of alkene. Two different reaction conditions have been developed, varying both the solvent and the amount of thiol. Depending on the alkene structure, water can be used as an alternative to dichloromethane as a solvent, thus increasing the sustainability of the whole process.

 

  1. Lanfranco, A., Renzi, P., Rusconi, M., Deagostino, A., Carboranes meet photochemistry: Recent progresses in light-mediated cage functionalisation, Tetrahedron Lett. 2023, 131, 154782

https://www.sciencedirect.com/science/article/pii/S0040403923004926

Abstract: Carboranes are intriguing structures which show an excellent in vivo stability and high chemical versatility. Furthermore, thanks to their structural and electronic properties they find many applications in several fields, as smart materials, bioisosters of aryl rings in knows drugs and BNCT (Boron Neutron Capture Therapy) agents, for example. Recently, the reactivity of these boron rich icosahedral cages, promoted by UV–visible light, has encountered the interest of some research groups, which described new pathways based on the formation of B- and C-centred radicals. In these way, properly functionalised carboranes have been prepared, increasing the applications of these precious moieties.

  1. Renzi, P.,* Scarfiello, J., Lanfranco, A., Deagostino, A., Light-Induced Domino and Multicomponent Reactions: How to Reach Molecular Complexity without a Catalyst, Eur. J. Org. Chem. 2023, 26, e202300713

https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/ejoc.202300713

Abstract: Achieving high molecular complexity can be not trivial, but the exploitation of domino reactions provides an atom- and step-economical method to reach this target. Over the past decades, a lot of efforts have been put on the development of photocatalytic cascades employing both metal-based and purely organic catalysts. Despite the effectiveness of these protocols, catalyst- and additive-free light-induced domino reactions are gaining momentum thank to their efficiency, operational simplicity and sustainability. The increasing number of papers published on this field in the last years is a proof of the appeal of these transformations. In this Review, we discuss domino and multicomponent reactions mediated by light with a focus on photocatalyst- and additive-free processes. The most recent advances in the synthesis of complex nitrogen-, oxygen-, sulphur- and selenium-heterocycles together with multicomponent cascades are analysed with an emphasis on both experimental and mechanistic studies.

Description unavailable

 

  1. Renzi, P., Ascensio, A., Azzi, E., Parisotto, S., Sordello, F., Pellegrino, F., Ghigo, G., Deagostino, A., Unveiling the Synthetic Potential of Inexpensive and Bench Stable Diarylmethylium Tetrafluoroborates in the Light Mediated Hydrosulfonylation of Alkenes, Chem. Sci. 2023, 14, 2721

https://pubs.rsc.org/en/content/articlelanding/2023/sc/d3sc00182b

Abstract: In this paper, we present the synthetic potential of diarylmethylium tetrafluoroborates as catalysts for the visible light promoted hydrosulfonylation of unactivated alkenes. For the first time, these salts, which are bench stable and easily preparable on a multi-gram scale, were employed as organocatalysts. Interestingly, a catalyst loading of only 1 mol% allowed sulfone products to be efficiently obtained from good-to-excellent yields with high functional-group tolerance and scalability up to 15 mmol of alkene. The mechanistic study, both experimental and computational, presented here, revealed an alternative mechanism for the formation of the key sulfonyl radical. Indeed, the photoactive species was proved not to be the diarylcarbenium salt itself, but two intermediates, a stable S–C adduct and an ion couple, that were formed after its interaction with sodium benzenesulfinate. Upon absorbing light, the ion couple could reach an excited state with a charge-transfer character which gave the fundamental sulfonyl radical. A PCET (proton-coupled electron transfer) closes the catalytic cycle reforming the diarylcarbenium salt.

Graphical abstract: Inexpensive and bench stable diarylmethylium tetrafluoroborates as organocatalysts in the light mediated hydrosulfonylation of unactivated alkenes

 

  1. Sforzi, J., Lanfranco, A., Stefania, R. Alberti, D., Bitonto, V., Parisotto, S., Renzi, P., Protti, N., Altieri, S., Deagostino, A., Geninatti Crich, S., A novel pH sensitive theranostic PLGA nanoparticle for Boron Neutron Capture Therapy in Mesothelioma treatment, Scientific Reports 2023, 13 (1), 620

https://www.nature.com/articles/s41598-023-27625-0

Abstract: This study aims to develop poly lactic-co-glycolic acid (PLGA) nanoparticles with an innovative imaging-guided approach based on Boron Neutron Capture Therapy for the treatment of mesothelioma. The herein-reported results demonstrate that PLGA nanoparticles incorporating oligo-histidine chains and the dual Gd/B theranostic agent AT101 can successfully be exploited to deliver a therapeutic dose of boron to mesothelioma cells, significantly higher than in healthy mesothelial cells as assessed by ICP-MS and MRI. The selective release is pH responsive taking advantage of the slightly acidic pH of the tumour extracellular environment and triggered by the protonation of imidazole groups of histidine. After irradiation with thermal neutrons, tumoral and healthy cells survival and clonogenic ability were evaluated. Obtained results appear very promising, providing patients affected by this rare disease with an improved therapeutic option, exploiting PLGA nanoparticles.

 

  1. Azzi, E., Ghigo, G., Sarasino, L., Parisotto, S., Moro, R., Renzi, P.,* Deagostino, A., Photoinduced Chloroamination Cyclization Cascade with N-Chlorosuccinimide: from N-(Allenyl)sulfonylamides to 2-(1-Chlorovinyl)pyrrolidines, J. Org. Chem. 2023, 88, 6420. JOC Special Issue Progress in Photocatalysis for Organic Chemistry

https://pubs.acs.org/doi/10.1021/acs.joc.2c01963

Abstract: Here, we present an intriguing photoinduced chloroamination cyclization of allenes bearing a tethered sulfonylamido group to afford 2-(1-chlorovinyl)pyrrolidines and related heterocycles in the presence of N-chlorosuccinimide (NCS) as the chlorine source. An in depth experimental and computational mechanistic study revealed the existence of multiple reaction pathways leading to a common nitrogen centered radical (NCR). This key NCR can be, in fact, originated from (a) the oxidation of the deprotonated allene by the photoexcited state of the Ru-catalyst and (b) the photodissociation of the in situ formed N-chloroallene. The NCR formation triggers an intramolecular cyclization to a highly reactive pyrrolidine vinyl radical, which upon chlorination delivers the final product. Thus, NCS plays a dual role, serving both as an activator of the sulfonamido functionality and as the chlorinating agent.

 

  1. Lanfranco, A., Alberti, D., Parisotto, S., Renzi, P., Lecomte, V., Geninatti-Crich, S., Deagostino, A., Biotinylation of a MRI/Gd BNCT Theranostic Agent to Access a Novel Tumor-Targeted Delivery System, Org. Biomol. Chem. 2022, 20, 5342

https://pubs.rsc.org/en/content/articlelanding/2022/ob/d2ob00764a

Abstract: A new biotin based BNCT (Boron Neutron Capture Therapy)-MRI theranostic is here reported (Gd-AL01) in order to exploit the high tumour specificity of biotin and the selectivity of BNCT in a synergistic manner. The key is the preparation of an intermediate where an o-carborane is linked to two amino groups orthogonally protected via the exploitation of two consecutive Mitsunobu reactions. The aim is its functionalisation in two different steps with biotin as the biological vector and Gd-DOTA as the MRI probe and GdNCT agent. Cell uptake was evaluated on HeLa tumour cells overexpressing biotin receptors. The internalised boron is proportional to the concentration of the theranostic agent incubated in the presence of cells. A maximum value of 77 ppm is reached and a well detectable signal intensity increase in the T1 weighted image of HeLa cells was observed, differently from clinically used GdHPDO3A, where no contrast is detected. These excellent results indicate that Gd-AL01 can be applied as a theranostic probe in BNCT studies.

 

  1. Parisotto, S., Azzi, E., Lanfranco, A., Renzi, P., Deagostino, A., Recent Progresses in the Preparation of Chlorinated Molecules: Electrocatalysis and Photoredox Catalysis in the Spotlight, Reactions 2022, 3 (2), 233

https://www.mdpi.com/2624-781X/3/2/18

Abstract: Among halogenated molecules, those containing chlorine atoms are fundamental in many areas such as pharmaceuticals, polymers, agrochemicals and natural metabolites. Despite the fact that many reactions have been developed to install chlorine on organic molecules, most of them rely on toxic and hazardous chlorinating reagents as well as harsh conditions. In an attempt to move towards more sustainable approaches, photoredox catalysis and electrocatalysis have emerged as powerful alternatives to traditional methods. In this review, we collect the most recent and significant examples of visible-light- or current-mediated chlorination published in the last five years.

 

  1. Renzi, P., Azzi, E., Bessone, E., Ghigo, G., Parisotto, S., Pellegrino, F., Deagostino, A., Blue light enhanced Heck arylation at room temperature applied to allenes, Org. Chem. Front., 2022, 9, 906; (cover picture)

https://pubs-rsc-org.bibliopass.unito.it/en/content/articlelanding/2022/...

Abstract: An unprecedented visible light enhanced room temperature Heck reaction between aryl halides and allenyl tosyl amines is here reported. A simple catalytic system (Pd(OAc)2/PPh3) is employed to afford arylated vinyl pyrrolidines and piperidines. A broad scope with high tolerance towards functional groups is observed. Electronic effects play an important role in the efficiency of this process. Mechanistic studies, both experimental and computational, indicate no evidence for a radical mechanism and a pivotal role of light in promoting the carbo-palladation step.

 

  1. Azzi, E., Lanfranco, A., Moro, R., Deagostino, A., Renzi, P.,* Visible Light as the Key for the Formation of Carbon–Sulfur Bonds in Sulfones, Thioethers, and Sulfonamides: An Update, Synthesis (Germany), 2021, 53 (19), 3440

https://www-thieme-connect-de.bibliopass.unito.it/products/ejournals/abs...

Abstract: This review summarizes the most relevant advancements made in the photocatalyzed synthesis of sulfones, thioethers, and sulfonamides from 2017 to the beginning of 2021. Synthetic strategies towards the construction of sulfur–carbon bonds are discussed together with the proposed reaction mechanisms. Interestingly, sulfur-based functional groups, which are of fundamental importance for the pharmaceutical field, can be assembled by photocatalysis in an easy and straightforward way under milder reaction conditions employing less toxic and expensive sulfur sources in comparison with common strategies.

 

  1. Lanfranco, A., Moro, R., Azzi, E., Deagostino, A., Renzi, P.,* Unconventional approaches for the introduction of sulfur-based functional groups, Org. Biomol. Chem., 2021, 19 (32), 6926

https://pubs-rsc-org.bibliopass.unito.it/en/content/articlelanding/2021/...

Abstract: Organosulfur compounds have a pivotal role in the functionalities of many natural products, pharmaceuticals and organic materials. For these reasons, the search for new methodologies for the formation of carbon–sulfur bonds has been the object of intensive work for organic chemists. However, the proposed strategies suffer from various drawbacks, such as volatility, toxicity, and instability of the sulfur sources or the use of VOC solvents. In this review, we summarise the recent protocols which have the goal of obtaining sulfones, thioethers, thiazines, thiazepines and sulfonamides in an unconventional and/or sustainable way. The use of starting materials less invasive and toxic with respect to the traditional reagents, alternative solvents such as water, ionic liquids or deep eutectic solvents, the exploitation of ultrasound and electrochemistry, increasing the efficiency of the process, are reported. Moreover, representative reaction mechanisms are also discussed.

Graphical abstract: Unconventional approaches for the introduction of sulfur-based functional groups

 

  1. Azzi, E., Ghigo, G., Parisotto, S., Pellegrino, F., Priola, E., Renzi, P., Deagostino, A., Visible Light Mediated Photocatalytic N-Radical Cascade Reactivity of γ,δ-Unsaturated N Arylsulfonylhydrazones: A General Approach to Structurally Diverse Tetrahydropyridazines, J. Org. Chem., 2021, 86, 3300

https://pubs-acs-org.bibliopass.unito.it/doi/abs/10.1021/acs.joc.0c02605

Abstract: Tetrahydropyridazines are of particular interest for their versatility as intermediates in organic synthesis and display pharmacological activity in several domains. Here, we describe the photocatalytic synthesis of different tetrahydropyridazines starting from γ,δ-unsaturated N-arylsulfonylhydrazones. Simple structural changes of substrates result into three different pathways beginning from a common N-hydrazonyl radical, which evolves through a domino carboamination/dearomatization, a HAT process, or a photoinduced radical Smiles rearrangement to afford diverse tetrahydropyridazines. All reactions are carried out in very mild conditions, and the quite inexpensive Cl2 is used as the catalyst. Preliminary mechanism studies are presented, among them luminescence and electrochemical characterization of the involved species. Computational studies allow to rationalize the mechanism in accord with the experimental findings.

18. D. Alberti, A. Michelotti, A. Lanfranco, N. Protti, S. Altieri, A. Deagostino and S. G. Crich, Sci. Rep., 2020, 10.

https://www.nature.com/articles/s41598-020-76370-1

Abstract: This study aims at merging the therapeutic effects associated to the inhibition of Carbonic Anhydrase IX (CAIX), an essential enzyme overexpressed by cancer cells including mesothelioma and breast cancer, with those ones brought by the application of Boron Neutron Capture Therapy (BNCT). This task was pursued by designing a sulfonamido-functionalised-carborane (CA-SF) that acts simultaneously as CAIX inhibitor and boron delivery agent. The CAIX expression, measured by Western blot analysis, resulted high in both mesothelioma and breast tumours. This finding was exploited for the delivery of a therapeutic dose of boron (> 20 μg/g) to the cancer cells. The synergic cytotoxic effects operated by the enzymatic inhibition and neutron irradiation was evaluated in vitro on ZL34, AB22 and MCF7 cancer cells. Next, an in vivo model was prepared by subcutaneous injection of AB22 cells in Balb/c mice and CA-SF was administered as inclusion complex with a β-cyclodextrin oligomer. After irradiation with thermal neutrons tumour growth was evaluated for 25 days by MRI. The obtained results appear very promising as the tumour growth was definitively markedly lower in comparison to controls and the CAIX inhibitor alone. This approach appears promising and it call consideration for the design of new therapeutic routes to cure patients affected by this disease.

19. L. Rotundo, E. Azzi, A. Deagostino, C. Garino, L. Nencini, E. Priola, P. Quagliotto, R. Rocca, R. Gobetto and C. Nervi, Front. Chem., 2019, 7, 1892-1912.

20.       N. Protti, D. Alberti, A. Toppino, S. Bortolussi, S. Altieri, A. Deagostino, S. Aime and S. Geninatti-Crich, Radiother. Onc., 2019, 133, S307-S308.

21.       S. Parisotto and A. Deagostino, Synthesis, 2019, 51, 1892-1912.

22.       E. Azzi, D. Alberti, S. Parisotto, A. Oppedisano, N. Protti, S. Altieri, S. Geninatti-Crich and A. Deagostino, Bioorg. Chem., 2019, 93, 103324.

23.       Protti Nicoletta , Deagostino Annamaria , Boggio Paolo , Alberti Diego  and G.-C. Simonetta, in Boron-Based Compounds: Potential and Emerging Applications in Medicine, eds. Hey-Hawkins Evamarie and V. T. Clara, John Wiley & Sons Ltd., First edn., 2018, pp. 389-415.

24.       S. Parisotto, L. Palagi, C. Prandi and A. Deagostino, Chem. Eur. J., 2018, 24, 5484-5488.

25.       S. Parisotto and A. Deagostino, Org. Lett., 2018, 20, 6891-6895.

26.       C. Bellomo, M. Chaari, J. Cabrera-Gonzalez, M. Blangetti, C. Lombardi, A. Deagostino, C. Vinas, N. Gaztelumendi, C. Nogues, R. Nunez and C. Prandi, Chem. Eur. J., 2018, 24, 15622-15630.

27.       D. Alberti, A. Deagostino, A. Toppino, N. Protti, S. Bortolussi, S. Altieri, S. Aime and S. Geninatti Crich, J. Contr. Rel., 2018, 280, 31-38.

28.       S. Parisotto, B. Lace, E. Artuso, C. Lombardi, A. Deagostino, R. Scudu, C. Garino, C. Medana and C. Prandi, Org. Biomol. Chem., 2017, 15, 884-893.

29.       S. Parisotto, G. Garreffa, C. Canepa, E. Diana, F. Pellegrino, E. Priola, C. Prandi, V. Maurino and A. Deagostino, ChemPhotoChem, 2017, 1, 56-59.

30.       P. C. G. Nejrotti S., Oppedisano A., Maranzana A., Occhiato E. G., Scarpi D., Deagostino A., Prandi C., Eur. J. Org. Chem., 2017, DOI: DOI: 10.1002/ejoc.201701212, 6228–6238.

31.       M. Lovisari, G. Volpi, D. Marabello, S. Cadamuro, A. Deagostino, E. Diana, A. Barge, M. Gallicchio, V. Boscaro and E. Ghibaudi, Journal of Inorganic Biochemistry, 2017, 170, 55-62.

32.       A. Deagostino, S. Parisotto, G. Garreffa, C. Canepa, E. Diana, F. Pellegrino, E. Priola, P. Cristina and V. Maurino, ChemPhotoChem, 2016, 1.

33.       D. Scarpi, S. Begliomini, C. Prandi, A. Oppedisano, A. Deagostino, E. Gomez-Bengoa, B. Fiser and E. G. Occhiato, Eur. J. Org. Chem., 2015, DOI: 10.1002/ejoc.201500205, 3251-3265.

34.       N. Protti, S. Geninatti-Crich, D. Alberti, S. Lanzardo, A. Deagostino, A. Toppino, S. Aime, F. Ballarini, S. Bortolussi, P. Bruschi, I. Postuma, S. Altieri and H. Nikjoo, Radiat. Prot. Dosimetry, 2015, 166, 369-373.

35.       S. Parisotto, P. Boggio, C. Prandi, P. Venturello and A. Deagostino, Tetrahedron Lett., 2015, 56, 5791-5794.

36.       P. Boggio, A. Toppino, S. Geninatti-Crich, D. Alberti, D. Marabello, C. Medana, C. Prandi, P. Venturello, S. Aime and A. Deagostino, Org. Biomol. Chem., 2015, 13, 3288-3297.

37.       E. Artuso, E. Ghibaudi, B. Lace, D. Marabello, D. Vinciguerra, C. Lombardi, H. Koltai, Y. Kapulnik, M. Novero, E. G. Occhiato, D. Scarpi, S. Parisotto, A. Deagostino, P. Venturello, E. Mayzlish-Gati, A. Bier and C. Prandi, J. Nat. Prod., 2015, 78, 2624-2633.

38.       D. Alberti, N. Protti, A. Toppino, A. Deagostino, S. Lanzardo, S. Bortolussi, S. Altieri, C. Voena, R. Chiarle, S. G. Crich and S. Aime, Nanomedicine : nanotechnology, biology, and medicine, 2015, 11, 741-750.

39.       S. Altieri, F. Ballarini, S. Bortolussi, I. Postuma, N. Protti, R. Nano, C. Rovelli, L. Cansolino, A. M. Clerici, C. Ferrari, L. Ciani, S. Ristori, L. Panza, S. Lanzardo, A. Deagostino, S. G. Crich and S. Aime, Anticancer Res., 2014, 34, 7479-7479.

40.       D. Alberti, A. Toppino, S. G. Crich, C. Meraldi, C. Prandi, N. Protti, S. Bortolussi, S. Altieri, S. Aime and A. Deagostino, Org. Biom. Chem., 2014, 12, 2457-2467.

41.       A. Toppino, M. E. Bova, S. G. Crich, D. Alberti, E. Diana, A. Barge, S. Aime, P. Venturello and A. Deagostino, Chem. Eur. J., 2013, 19, 720-727.

42.       A. Toppino, P. Arru, N. Bianco, C. Prandi, P. Venturello and A. Deagostino, Eur. J. Org. Chem., 2013, 2013, 6990-6997.

43.       S. Sgarbossa, E. Diana, D. Marabello, A. Deagostino, S. Cadamuro, A. Barge, E. Laurenti, M. Gallicchio, V. Boscaro and E. Ghibaudi, J. Inorg. Biochem., 2013, 128, 26-37.

44.       A. Oppedisano, C. Prandi, P. Venturello, A. Deagostino, G. Goti, D. Scarpi and E. G. Occhiato, J. Org. Chem., 2013, 78, 11007-11016.

45.       M. Blangetti, H. Rosso, C. Prandi, A. Deagostino and P. Venturello, Molecules, 2013, 18, 1188-1213.

46.       S. Geninatti-Crich, A. Deagostino, A. Toppino, D. Alberti, P. Venturello and S. Aime, Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 543-553.

47.       C. Medana, P. Calza, A. Deagostino, F. Dal Bello, E. Raso and C. Baiocchi, J.  Mass Spectrom., 2011, 46, 782-786.

48.       S. Geninatti-Crich, D. Alberti, I. Szabo, A. Deagostino, A. Toppino, A. Barge, F. Ballarini, S. Bortolussi, P. Bruschi, N. Protti, S. Stella, S. Altieri, P. Venturello and S. Aime, Chem. Eur. J., 2011, 17, 8479-8486.

49.       A. Deagostino, C. Prandi, S. Tabasso and P. Venturello, Curr. Org. Chem., 2011, 15, 2390-2412.

50.       M. Blangetti, A. Deagostino, G. Gervasio, D. Marabello, C. Prandi and P. Venturello, Org. Biom. Chem., 2011, 9, 2535-2538.

51.       M. Blangetti, G. Croce, A. Deagostino, E. Mussano, C. Prandi and P. Venturello, J. Org. Chem., 2011, 76, 1814-1820.

52.       A. Deagostino, C. Prandi, S. Tabasso and P. Venturello, Curr. Org. Chem., 2010, 14, 230-263.

53.       A. Deagostino, C. Prandi, S. Tabasso and P. Venturello, Molecules, 2010, 15, 2667-2685.

54.       T. Boi, A. Deagostino, C. Prandi, S. Tabasso, A. Toppino and P. Venturello, Org. Biomol. Chem., 2010, 8, 2020-2027.

55.       E. G. Occhiato, D. Scarpi, A. Guarna, S. Tabasso, A. Deagostino and C. Prandi, Synthesis, 2009, DOI: 10.1055/s-0029-1216979, 3611-3616.

56.       A. Crivello, C. Nervi, R. Gobetto, S. G. Crich, I. Szabo, A. Barge, A. Toppino, A. Deagostino, P. Venturello and S. Aime, J. Biolog. Inorg. Chem., 2009, 14, 883-890.

57.       M. Blangetti, A. Deagostino, C. Prandi, S. Tabasso and P. Venturello, Org. Lett., 2009, 11, 3914-3917.

58.       C. Bhattacharya, P. Bonfante, A. Deagostino, Y. Kapulnik, P. Larini, E. G. Occhiato, C. Prandi and P. Venturello, Org. Biomol. Chem., 2009, 7, 3413-3420.

59.       M. Barbero, S. Cadamuro, A. Deagostino, S. Dughera, P. Larini, E. G. Occhiato, C. Prandi, S. Tabasso, R. Vulcano and P. Venturello, Synthesis, 2009, DOI: 10.1055/s-0029-1216819, 2260-2266.

60.       A. Deagostino, C. Prandi, A. Toppino and P. Venturello, Tetrahedron, 2008, 64, 10344-10349.

61.       A. Deagostino, P. Larini, E. G. Occhiato, L. Pizzuto, C. Prandi and P. Venturello, J. Org. Chem., 2008, 73, 1941-1945.

62.       M. Blangetti, A. Deagostino, C. Prandi, C. Zavattaro and P. Venturello, Chem. Comm., 2008, DOI: 10.1039/b719462e, 1689-1691.

63.       S. Aime, A. Barge, A. Crivello, A. Deagostino, R. Gobetto, C. Nervi, C. Prandi, A. Toppino and P. Venturello, Organic & Biomolecular Chemistry, 2008, 6, 4460-4466.

64.       A. Deagostino, C. Prandi, C. Zavattaro and P. Venturello, European Journal of Organic Chemistry, 2007, DOI: 10.1002/ejoc.200600872, 1318-1323.

65.       M. Blangetti, A. Deagostino, H. Rosso, C. Prandi, C. Zavattaro and P. Venturello, Eur. J. Org. Chem., 2007, DOI: 10.1002/ejoc.200700520, 5867-5874.

66.       A. Deagostino, C. Prandi, C. Zavattaro and P. Venturello, Eur. J. Org. Chem., 2006, DOI: 10.1002/ejoc.200500944, 2463-2483.

67.       A. Deagostino, V. Farina, C. Prandi, C. Zavattaro and P. Venturello, Eur. J. Org. Chem., 2006, DOI: 10.1002/ejoc.200600230, 3451-3456.

68.       L. Beccaria, A. Deagostino, C. Prandi, C. Zavattaro and P. Venturello, Synlett, 2006, DOI: 10.1055/s-2006-948183, 2989-2992.

69.       C. Prandi, A. Deagostino, P. Venturello and E. G. Occhiato, Org. Lett., 2005, 7, 4345-4348.

70.       A. Deagostino, M. Migliardi, E. G. Occhiato, C. Prandi, C. Zavattaro and P. Venturello, Tetrahedron, 2005, 61, 3429-3436.

71.       S. Allasia, A. Deagostino, C. Prandi, C. Zavattaro and P. Venturello, Synthesis, 2005, DOI: 10.1055/s-2005-918414, 3627-3631.

72.       A. Deagostino, C. Prandi, C. Zavattaro and P. Venturello, Eur. J. Org. Chem., 2003, DOI: 10.1002/ejoc.200300136, 2612-2616.

73.       A. Deagostino, C. Prandi and P. Venturello, Curr. Org. Chem., 2003, 7, 821-839.

74.       A. Deagostino, C. Prandi and P. Venturello, Org. Lett., 2003, 5, 3815-3817.

75.       P. B. Tivola, A. Deagostino, C. Prandi and P. Venturello, Organic Letters, 2002, 4, 1275-1277.

76.       E. G. Occhiato, C. Prandi, A. Ferrali, A. Guarna, A. Deagostino and P. Venturello, J. Org. Chem., 2002, 67, 7144-7146.

77.       P. B. Tivola, A. Deagostino, C. Prandi and P. Venturello, Synth. Commun., 2001, 31, 953-960.

78.       P. B. Tivola, A. Deagostino, C. Prandi and P. Venturello, J. Chem. Soc. Perkin Trans.1, 2001, DOI: 10.1039/b007500k, 437-441.

79.       P. B. Tivola, A. Deagostino, C. Prandi and P. Venturello, Chem. Commun., 2001, DOI: 10.1039/b104449b, 1536-1537.

80.       A. Deagostino, P. B. Tivola, C. Prandi and P. Venturello, J. Chem. Soc. Perkin Trans.1, 2001, DOI: 10.1039/b106906c, 2856-2860.

81.       P. B. Tivola, L. Beccaria, A. Deagostino, C. Prandi and P. Venturello, Synthesis, 2000, 1615-1621.

82.       J. Martin, A. Deagostino, C. Perrio, F. Dauphin, C. Ducandas, C. Morin, P. L. Desbene and M. C. Lasne, Bioorg. Med. Chem., 2000, 8, 591-600.

83.       P. B. Tivola, A. Deagostino, C. Fenoglio, M. Mella, C. Prandi and P. Venturello, Eur. J. Org. Chem., 1999, 1999, 2143-2147.

84.       A. Deagostino, P. B. Tivola, C. Prandi and P. Venturello, Synlett, 1999, 1841-1843.

85.       A. Deagostino, C. Prandi and P. Venturello, Synthesis, 1998, 1149-1152.

86.       A. Deagostino, J. Maddaluno, M. Mella, C. Prandi and P. Venturello, J. Chem. Soc. Perkin Trans.1, 1998, DOI: 10.1039/a707913c, 881-888.

87.       F. Cominetti, A. Deagostino, C. Prandi and P. Venturello, Tetrahedron, 1998, 54, 14603-14608.

88.       A. Deagostino, C. Prandi and P. Venturello, Tetrahedron, 1996, 52, 1433-1442.

89.       A. Deagostino, J. Maddaluno, C. Prandi and P. Venturello, J. Org. Chem., 1996, 61, 7597-7599.

90.       A. Deagostino, C. Prandi, G. Tonachini and P. Venturello, Trends Org. Chem., 1995, 5, 103-113.

91.       A. Deagostino, M. Mella, C. Prandi and P. Venturello, J. Chem. Soc. Perkin Trans.1, 1995, DOI: 10.1039/p19950002757, 2757-2760.

Inglese